On the Gauss-Newton method for solving equations

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Analysis on Local Convergence of Inexact Newton-Gauss Method for Solving Singular Systems of Equations

We study the local convergence properties of inexact Newton-Gauss method for singular systems of equations. Unified estimates of radius of convergence balls for one kind of singular systems of equations with constant rank derivatives are obtained. Application to the Smale point estimate theory is provided and some important known results are extended and/or improved.

متن کامل

Newton - Secant method for solving operator equations ∗

where F is a Fréchet-differentiable operator defined on an open subset D of a Banach space X with values in a Banach space Y . Finding roots of Eq.(1) is a classical problem arising in many areas of applied mathematics and engineering. In this study we are concerned with the problem of approximating a locally unique solution α of Eq.(1). Some of the well known methods for this purpose are the f...

متن کامل

On q-Newton-Kantorovich method for solving systems of equations

Starting from q-Taylor formula for the functions of several variables and mean value theorems in q-calculus which we prove by ourselves, we develop a new methods for solving the systems of equations. We will prove its convergence and we will give an estimation of the error. 2004 Elsevier Inc. All rights reserved.

متن کامل

On a Newton-Like Method for Solving Algebraic Riccati Equations

An exact line search method has been introduced by Benner and Byers [IEEE Trans. Autom. Control, 43 (1998), pp. 101–107] for solving continuous algebraic Riccati equations. The method is a modification of Newton’s method. A convergence theory is established in that paper for the Newton-like method under the strong hypothesis of controllability, while the original Newton’s method needs only the ...

متن کامل

On the iteratively regularized Gauss-Newton method for solving nonlinear ill-posed problems

The iteratively regularized Gauss-Newton method is applied to compute the stable solutions to nonlinear ill-posed problems F (x) = y when the data y is given approximately by yδ with ‖yδ − y‖ ≤ δ. In this method, the iterative sequence {xk} is defined successively by xk+1 = x δ k − (αkI +F (xk)F (xk)) ( F (xk) ∗(F (xk)− y) +αk(xk − x0) ) , where x0 := x0 is an initial guess of the exact solutio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proyecciones (Antofagasta)

سال: 2012

ISSN: 0716-0917

DOI: 10.4067/s0716-09172012000100002